Mark Scheme - PI4.2 Entropy and Feasibility of Reactions

1	(a)	(i)	atomisation of magnesium / vaporisation of magnesium	[1]	
		(ii)	increased ratio positive charge on nucleus: number of electrons	[1]	
		(iii)	is positive because the (negative) electron is repelled by negative species	[1]	
		(iv)	lattice enthalpy is –3835(kJ mol ⁻¹) numerical value (1) negative sign (1)	[2]	
	(b)	(i)	gases are more random/ have more disorder / move more freely and therefore higher entropy	have a [1]	
		(ii)	$\Delta S = 21.8 (JK^{-1}mol^{-1})$	[1]	
		(iii)	$\Delta G = \Delta H - T\Delta S$ (1) ft from (ii)		
			ΔG must be –ve if reaction to be spontaneous/ to calculate T make ΔG = 0 (1)		
			0 = 318000 - T 21.8 T = 14587/14600 (K) (1)	[3]	
	(c)	use of aqueous sodium hydroxide (1)			
		white precipitate for all possible ions (1)			
		excess aqueous sodium hydroxide – precipitate dissolves for Pb2+ and Al3+ (1)			
		use of aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble			
		chloride/ soluble sulfate (1)			
		result – yellow ppt for Pb ²⁺ + Γ and no ppt for Al ³⁺ / white ppt for Pb ²⁺ + C Γ or SO ₄ ²⁻			
		and no ppt for Al ³⁺ [result for both needed] (1) [5]			
		QWC Organisation of information clear and coherent (1)			
			Use of specialist vocabulary (1)	QWC [2]	
	(d)	(i)	diagram to show central Al, 4 Cl and 4 shared pairs of electrons, all Cl outer electrons, dative pair identifiable	[1]	
		(ii)	chlorination of benzene (1) produces CI [†] as electrophile (1)		
		OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evaporate			
			in use (1)		
			OR catalyst (1) in polymerisation of alkenes (1)	[2]	
			Т	otal [20]	

2 (a)
$$2 \times (0) + 3 \times (-394) - (-826) - 3 \times \Delta H^{\theta_{f}}(CO) = -23 (1)$$

 $2 \times (\Delta H^{\theta_{f}}(Fe)) + 3 \times (\Delta H^{\theta_{f}}(CO_{2})) - (\Delta H^{\theta_{f}}(Fe_{2}O_{3})) - 3 \times \Delta H^{\theta_{f}}(CO) = -23 (1)$
 $-1182 + 826 + 23 = 3 \times \Delta H^{\theta_{f}}(CO)$
 $-333 = 3 \times \Delta H^{\theta_{f}}(CO)$
 $-111 \text{ kJ mol}^{-1} = \Delta H^{\theta_{f}}(CO)$ (1) [3]

- (b) Gases have higher entropies than solids as the molecules have a greater degree of freedom / disorder [1]
- (c) (i) $\Delta G = \Delta H T \Delta S = -23 (298 \times 9/1000)$ (1) $= -25.7 \text{ kJ mol}^{-1} \text{ (1)}$ [2]
 - (ii) A reaction is feasible when ΔG is negative (1)
 No temperature exists where ΔG is positive / ΔG is negative at all temperatures (1)
 - (iii) Higher temperature used to increase rate of reaction [1]

Total [9]

3 (a) $CO \rightarrow C + 2$ $CO_2 \rightarrow +4$ (1)

Increase of (positive) oxidation number = oxidation / reducing agents themselves are always oxidised are always oxidised (1)

OR $I_2O_5 \rightarrow I +5$ $I_2 \rightarrow I_2 0$ (1)

Oxidation number of iodine reduced, reduction occurring, CO reducing agent (1) [2]

- (b) +2 state becomes mores stable down the group and +4 becomes less stable. [1]
- (c) (i) Add (a little) sodium hydroxide solution (1) to each solution.

 A white precipitate (1) of aluminium / lead(II) hydroxide (1) is seen.

 When more sodium hydroxide solution is added these precipitates (dissolve giving a colourless solution). (1)

QWC Legibility of text: accuracy of spelling, punctuation and grammar; clarity of meaning. [1]

- (ii) Yellow precipitate (1) $Pb^{2+} + 2I^{-} \rightarrow PbI_{2}$ [2]
- (d) (i) The bonding of aluminium in the monomer has not completed the octet / suitable diagram / 6 electrons in its outer shell (1)
 When the dimer is formed this octet of bonded electrons is formed (1)

- (ii) (As a catalyst) in the chlorination of benzene / making ionic liquids [1]
- (iii) I The number of (gaseous) species is increasing, leading to less order [1]
 - II For the reaction to be just spontaneous $\Delta G = 0$ (1)

substituting

 $T = 60\,000/88 = 682\,\mathrm{K}/409^{\circ}\mathrm{C}$ (1) [2]

 $0 = 60\,000 - 88\,\mathrm{T}$

(e)
$$K_c = [[\underline{A1(H_2O)_5(OH)}]^{2+}(aq)][[\underline{H^+}](aq)]$$

 $[[\underline{A1(H_2O)_6}]^{3+}(aq)]$

Total [20]